Local Dynamic Stability Versus Kinematic Variability of Continuous Overground and Treadmill Walking

Abstract
This study quantified the relationships between local dynamic stability and variability during continuous overground and treadmill walking. Stride-to-stride standard deviations were computed from temporal and kinematic data. Maximum finite-time Lyapunov exponents were estimated to quantify local dynamic stability. Local stability of gait kinematics was shown to be achieved over multiple consecutive strides. Traditional measures of variability poorly predicted local stability. Treadmill walking was associated with significant changes in both variability and local stability. Thus, motorized treadmills may produce misleading or erroneous results in situations where changes in neuromuscular control are likely to affect the variability and/or stability of locomotion.