The phosphoenolpyruvate: sugar phosphotransferase system of Streptococcus salivarius. Identification of a IIIman protein

Abstract
A double-spontaneous mutant resistant to the growth inhibitory effect of α-methylglucoside and 2-deoxyglucose was isolated from Streptococcus salivarius. This mutant strain, called αS3L11, did not grow on mannose and grew poorly on 5 mM fructose and 5 mM glucose. Isolated membranes of strain αS3L11 were unable to catalyse the phosphoenolpyruvate-dependent phosphorylation of mannose in the presence of purified enzyme I and HPr. Addition of dialysed membrane-free cellular extract of the wild-type strain to the reaction medium restored the activity. The factor that restored the phosphoenolpyruvate–mannose phosphotransferase activity to membranes of strain αS3L11 was called IIIman. This factor was partially purified from the wild-type strain by DEAE-cellulose chromatography, DEAE-TSK chromatography, and molecular seiving on a column of Ultrogel AcA 34. This partially purified preparation also enhanced the phosphoenolpyruvate-dependent phosphorylation of glucose, fructose, and 2-deoxyglucose in strain αS3L11.

This publication has 16 references indexed in Scilit: