Mouse Microsomal Class 3 Aldehyde Dehydrogenase: AHD3 cDNA Sequence, Inducibility by Dioxin and Clofibrate, and Genetic Mapping

Abstract
We have cloned and sequenced the mouse AHD3 cDNA, which codes for the Class 3 microsomal aldehyde dehydrogenase (ALDH3m). The cDNA is 2,997 bp in length excluding the poly(A)+ tail, and has 5′ and 3′ nontranslated regions of 113 bp and 1,429 bp, respectively. The deduced amino acid sequence consists of 484 amino acids, including the first methionine (Mr = 53,942), and contains a hydrophobic segment at the carboxyl terminus which is the putative membrane anchor. The mouse AHD3 protein was found to be: 95% similar to the rat microsomal ALDH3m protein, 65% identical to the mouse, rat and human cytosolic ALDH3c protein, and Ahd3 gene likely spans less than a total of 25 kb. The mouse Ahd3 gene is very tightly linked to the Ahd4 gene on chromosome 11. Mouse AHD3 mRNA levels are increased by dioxin in mouse Hepa-1c1c7 hepatoma wild-type (wt) cells but not in the Ah receptor nuclear translocator (ARNT)-defective (c4) mutant line, indicating that the induction process is mediated by the Ah (aromatic hydrocarbon) dioxin-binding receptor. AHD3 mRNA levels are also inducible by clofibrate in both the wt and c4 lines. AHD3 mRNA levels are not elevated in the CYP1A1 metabolism-deficient c37 mutant line or as part of the oxidative stress response found in the untreated 14CoS/14CoS mouse cell line. These data indicate that, although inducible by dioxin, the Ahd3 gene does not qualify as a member of the aromatic Aydrocarbon [Ah] gene battery.