On Buchsbaum rings obtained by gluing
- 1 June 1975
- journal article
- research article
- Published by Cambridge University Press (CUP) in Nagoya Mathematical Journal
- Vol. 83, 123-135
- https://doi.org/10.1017/s0027763000019449
Abstract
Let A be a Noetherian local ring with maximal ideal m. In 1973 J. Barshay [1] showed that, if A is a Cohen-Macaulay ring, then so is the Rees algebra R(q) = ⊕n≧0qn for every parameter ideal q of A (cf. p. 93, Corollary). Recently the author and Y. Shimoda [5] have proved that the Rees algebra R(q) is a Cohen-Macaulay ring for every parameter ideal q of A if and only if(#) A is a Buchsbaum ring and for i ≠ 1, dim A.Keywords
This publication has 9 references indexed in Scilit:
- On the Cohen-Macaulayfication of certain Buchsbaum ringsNagoya Mathematical Journal, 1980
- On Rees algebras over Buchsbaum ringsKyoto Journal of Mathematics, 1980
- On the associated graded ring of a local Cohen-Macaulay ringKyoto Journal of Mathematics, 1977
- Weitere Bemerkungen zu einem problem der Schnittheorie und über ein Maβ von A. Seidenberg für die ImperfektheitJournal of Algebra, 1975
- Über das Amsterdamer Programm von W. Gröbner und Buchsbaum VarietätenMonatshefte für Mathematik, 1974
- Graded algebras of powers of ideals generated by A-sequencesJournal of Algebra, 1973
- Über eine Vermutung von D. A. BuchsbaumJournal of Algebra, 1973
- Eine Verallgemeinerung der Cohen-Macaulay Ringe und Anwendungen auf ein Problem der MultiplizitätstheorieKyoto Journal of Mathematics, 1973
- The converse to a well known theorem on Noetherian ringsMathematische Annalen, 1968