Wetting transitions at a solid–fluid interface

Abstract
Nonlocal density functional free energy theories are used to investigate the nature of the wetting transition of a Lennard-Jones fluid near a Lennard-Jones wall. In particular, the wetting behavior is investigated for argon films on a solid carbon dioxide substrate for which the Lennard-Jones parameters are known. In accordance with previous predictions of local density functional theories, the transition is found to be of first order. The locus of the prewetting line of the Ar–CO2 system is calculated. Density profiles obtained from the Tarazona and generalized hard rod models are both in qualitative agreement with Monte Carlo simulations of Finn and Monson, although Tarazona’s model performs better quantitatively.