Independent Unbiased Coin Flips From A Correlated Biased Source: A Finite State Markov Chain
- 24 August 2005
- conference paper
- Published by Institute of Electrical and Electronics Engineers (IEEE)
- No. 02725428,p. 425-433
- https://doi.org/10.1109/sfcs.1984.715944
Abstract
von Neumann's trick for generating an absolutely unbiased coin from a biased one is this: 1. Toss the biased coin twice, getting 00, 01, 10, or 11. 2. If 00 or 11 occur, go back to step 1; else 3. Call 10 a H, 01 a T. Since p[H] = p[1]*p[0] = p[T], the output is unbiased. Example: 00 10 11 01 01 /spl I.oarr/ H T T. Peter Elias gives an algorithm to generate an independent unbiased sequence of Hs and Ts that nearly achieves the Entropy of the one-coin source. His algorithm is excellent, but certain difficulties arise in trying to use it (or the original von Neumann scheme) to generate bits in expected linear time from a Markov chain. In this paper, we return to the original one-coin von Neumann scheme, and show how to extend it to generate an independent unbiased sequence of Hs and Ts from any Markov chain in expected linear time. We give a right and wrong way to do this. Two algorithms A and B use the simple von Neumann trick on every state of the Markov chain. They differ in the time they choose to announce the coin flip. This timing is crucial.Keywords
This publication has 2 references indexed in Scilit:
- Tree Algorithms for Unbiased Coin Tossing with a Biased CoinThe Annals of Probability, 1984
- The Efficient Construction of an Unbiased Random SequenceThe Annals of Mathematical Statistics, 1972