Computing a canonical polygonal schema of an orientable triangulated surface

Abstract
International audienceA closed orientable surface of genus g can be obtained by appropriate identi cation of pairs of edges of a 4g-gon (the polygonal schema). The identi ed edges form 2g loops on the surface, that are disjoint except for their common end-point. These loops are generators of both the fundamental group and the homology group of the surface. The inverse problem is concerned with nding a set of 2g loops on a triangulated surface, such that cutting the surface along these loops yields a (canonical) polygonal schema. We present two optimal algorithms for this inverse problem. Both algorithms have been implemented using the CGAL polyhedron data structure

This publication has 7 references indexed in Scilit: