Clay mineral evolution in the Illinois Basin and its causes

Abstract
Samples from deep wells of the Palaeozoic Illinois Basin show the evolution of the illite-smectite (I-S) mineral transformation under low temperatures for very long periods of time. Curve decomposition of the XRD traces was used to identify and follow the evolution of the different clay minerals. All samples showed the presence of a large amount of illite (fine and coarse grained micaceous material) and a much smaller quantity of I-S. In a vertical section the R=1, I-S diffraction peak initially changes with depth indicating change from 80 to 95% illite content but it changes little with further depth. The I-S intensity decreases with depth compared with the illite peaks. These relations indicate that the clays in the Palaeozoic sequence of the Illinois Basin evolve continuously in the deep well, It appears that the final stages of I-S mineral transformation can reach a compositional stagnation (smectite content) as the I-S phase is dissolved to produce illite.Using a kinetic model to describe the smectite to illite clay transformation, it is deduced that the Illinois basin had a longer period of deposition than indicated by present stratigraphy and that almost 1.5 km of sediments deposited in the Mesozoic were eroded in later Tertiary times. These conclusions are confirmed by published data on the maturation of organic matter.