Abstract
Previous studies on this cortexless mutant of Bacillus cereus var. alesti indicated that the forespore membrane was the site of the biochemical lesion. This hypothesis is supported by the results presented here: fatty acid composition of sporulating cells of the mutant is altered, while in vegetative cells it is comparable to the parent; soluble precursors of peptidoglycan synthesis are accumulated in the mutant, at the time of cortex formation; homogenates of the mutant prepared at the time of cortex formation are unable to incorporate tritiated diaminopimelic acid into peptidoglycan, while homogenates of cells forming germ cell wall do so to an extent comparable to that of the parent; lipid-linked intermediates are formed by the mutant as in the parent. Apparently the mutant is unable either to transfer disaccharide penta-peptide units from the carrier lipid to the growing peptidoglycan acceptor, or to transport lipid-linked intermediates across the forespore membrane.

This publication has 0 references indexed in Scilit: