Frequency downshift in three-dimensional wave trains in a deep basin

Abstract
The conservative evolution of weakly nonlinear narrow-banded gravity waves in deep water is investigated numerically with a modified nonlinear Schrödinger equation, for application to wide wave tanks. When the evolution is constrained to two dimensions, no permanent shift of the peak of the spectrum is observed. In three dimensions, allowing for oblique sideband perturbations, the peak of the spectrum is permanently downshifted. Dissipation or wave breaking may therefore not be necessary to produce a permanent downshift. The emergence of a standing wave across the tank is also predicted.

This publication has 0 references indexed in Scilit: