Tunneling into Multiwalled Carbon Nanotubes: Coulomb Blockade and the Fano Resonance

Abstract
Tunneling spectroscopy measurements of single tunnel junctions formed between multiwalled carbon nanotubes (MWNTs) and a normal metal are reported. Intrinsic Coulomb interactions in the MWNTs give rise to a strong zero-bias suppression of a tunneling density of states that can be fitted numerically to the environmental quantum-fluctuation theory. An asymmetric conductance anomaly near zero bias is found at low temperatures and interpreted as Fano resonance in the strong tunneling regime.
All Related Versions