Study of acid milk coagulation by an optical method using light reflection

Abstract
Summary: A turbidimetric method, based on light reflection, was used to study acid coagulation of reconstituted skim milk at low temperature. Capillary viscosimetry, gelograph and laser granulometer techniques were also employed. Acidification of milk was produced by hydrolysis of glucono-δ-lactone. The general shape of the turbidimetric signal as a function of pH or time can be divided into three stages: a lag phase followed by a significant decrease and then a final rise. Two factors have a great influence on the development of milk turbidity, pH and temperature. Dynamic viscosity measurements can be related to the turbidimetric signal while laser granulometrie measurements cannot be correlated with changes in turbidity: the micelle size distribution remains constant until the first signs of gelation. As previous work showed, dynamic viscosity diminishes with acidification until a particular pH is reached (pH 5·9 at 15°C and pH 5·75 at 20°C). We have related this latter period to the turbidimetric lag phase. As milk turbidity became lower than its initial value (pH 5·75 at 15°C and pH 5·55 at 20°C), dynamic viscosity increased significantly. The release of material from micelles (β-casein and Ca) could explain this phenomenon. In the same way, further increase of turbidity at a particular pH value (pH 5·3 at both 15 and 20°C) coulcl be partly due to the reincorporation of soluble casein monomers in the micelle framework. As the onset of gelation was approached, turbidity still increased as a result of gel network formation.