Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture
Open Access
- 1 March 1988
- journal article
- research article
- Published by The Company of Biologists in Journal of Cell Science
- Vol. 89 (3) , 373-378
- https://doi.org/10.1242/jcs.89.3.373
Abstract
Articular chondrocytes are known to be phenotypically unstable in culture. One condition that has been reported to suppress dedifferentiation is cultivation at high density on tissue-culture plastic. The aim of the experiments described here was to study the effect of seeding density on chondrocyte proliferation and 35SO4 incorporation, and on the types of collagen and proteoglycan synthesized. I found that cells seeded at low or high density reached the same final density at confluence, and that 35SO4 incorporation, while initially higher (per cell) in high-density cultures, fell under both conditions, reaching the same low level after 3 weeks. The proportion of cells expressing keratan sulphate fell in low- but not high-density cultures and the decline was not prevented by inhibition of cell division. In all the cultures cells expressing keratan sulphate tended to have a rounded morphology. After 21 days in culture, chondrocytes grown at high density expressed predominantly large proteoglycans that aggregated with hyaluronic acid, whereas in low-density cultures a smaller, non-aggregating form was also present. By 21 days in culture cells at both high and low density were expressing type I collagen, although the high-density cells also had an extensive extracellular matrix of type II collagen. These observations support the conclusion that high seeding density stabilizes the chondrocyte phenotype to a greater extent than low seeding density. They also suggest that enhanced dedifferentiation at low density may be due to cell spreading, rather than to selective proliferation of a phenotypically unstable subpopulation of cells.This publication has 16 references indexed in Scilit:
- The extracellular matrix and cell shapeTrends in Biochemical Sciences, 1986
- Evidence for two distinct mechanisms of anchorage stimulation in freshly explanted and 3T3 Swiss mouse fibroblastsCell, 1986
- Two subpopulations of differentiated chondrocytes identified with a monoclonal antibody to keratan sulfate.The Journal of cell biology, 1985
- Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton.The Journal of cell biology, 1984
- Matrix Synthesis in High Density Cultures of Bovine Epiphyseal Plate ChondrocytesConnective Tissue Research, 1983
- Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gelsCell, 1982
- Synthesis of cartilage matrix by mammalian chondrocytes in vitro. II. Maintenance of collagen and proteoglycan phenotype.The Journal of cell biology, 1982
- Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology.The Journal of cell biology, 1982
- Fibronectin alters the phenotypic properties of cultured chick embryo chondroblastsCell, 1979
- Chondroid Expression by Lapine Articular Chondrocytes in Spinner Culture Following Monolayer GrowthConnective Tissue Research, 1974