Sampling problems in an heterogeneous organ: Quantitation of relative and total volume of pancreatic islets by light microscopy

Abstract
In stereological studies analysis of sampling variances is used for optimizing the sampling design. In organs with a heterogeneous distribution of the phase of interest the analysis of sampling variances can be undertaken only if the observed variance between sections is distributed into the fraction which is due to random variation and the fraction which is due to the heterogeneity. In the present example (pancreatic islet volume [from dogs] estimated by light microscopic point-counting) the density of islets showed a linear increase along the axis of the organ. By analysis of sampling variances it was calculated that the most efficient number of sections (cut perpendicular to the organ) was considerably lower when the isolated contribution from the random variation was considered. The total islet volume was obtained by the product of the fractional islet volume and the pancreatic weight. Analysis of sampling variances of the total islet volume was performed by including the variance contribution from the individual pancreatic weights to the variance of the group mean total islet volume. Due to a negative correlation between the fractional volume and organ weight the total islet volume in the group of animals was more precisely estimated than the fractional islet volume. [Islet volume has been shown to be reduced in human diabetics.] The methods used for dealing with the heterogeneity of the organ and for estimating sampling variances of total structural quantities generalize to a large number of stereological studies in biology.