Interleaving technique in distributed power conversion systems

Abstract
In distributed power supply systems, the parallelism of DC-DC converters is a basic architecture. In this paper, we use the time domain method to show that the amplitude of the input/output current ripple of N(⩾1) parallelly interleaved modules is always less than or equal to that of the individual modules for buck, boost, flyback, Cuk, and SEPIC converters if the phase shift among the modules is 2π/N. Furthermore, the insight gained from the time domain method allows us to develop efficient numerical algorithms for predicting the net ripple amplitude in interleaved power modules,

This publication has 5 references indexed in Scilit: