A general weight matrix formulation using optimal control

Abstract
Classical methods from optimal control theory are used in deriving general forms for neural network weights. The network learning or application task is encoded in a performance index of a general structure. Consequently, different instances of this performance index lead to special cases of weight rules, including some well-known forms. Comparisons are made with the outer product rule, spectral methods, and recurrent back-propagation. Simulation results and comparisons are presented.

This publication has 11 references indexed in Scilit: