Loss of chondroitin 6‐sulfate and hyaluronan from failed porcine bioprosthetic valves

Abstract
Explanted porcine bioprosthetic valves have a thinned spongiosa, partially because of an overall loss of glycosaminoglycans (GAGs). We measured the concentrations of specific GAG classes in explanted bioprosthetic valves (n = 14, implanted 12.0 ± 4.7 years) compared with glutaraldehyde-fixed porcine controls. After extraction with NaOH, GAGs were analyzed using either a hexuronic acid assay or fluorophore-assisted carbohydrate electrophoresis to quantify the individual GAG classes. The total GAG concentration in explants was 198 ± 95 pmol/mg wet weight—93% less than freshly fixed controls. Explants also contained altered proportions of the different GAG classes relative to controls. The proportions of hyaluronan and chondroitin/dermatan-6-sulfate were reduced from 39 to 7% and 34 to 18% of total GAGs, respectively. The predominant explant GAG class was chondroitin/dermatan-4-sulfate (proportion elevated from 14 to 70%). This GAG is commonly found in the collagen-associated proteoglycan decorin, which is likely well crosslinked by glutaraldehyde. Chondroitin-6-sulfate is commonly found in the water- and hyaluronan-binding proteoglycan versican, which is likely poorly crosslinked. The loss of versican and its associated water-binding capacity is consistent with the thinned spongiosa. The resultant compromise of hydration, compressive resistance, and viscoelasticity may be responsible for the deterioration of the bioprosthesis in vivo. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 65A: 251–259, 2003