Nets of conics

Abstract
Segre's classification of pencils of quadrics is well known, and appears in standard texts such as (1), (2). By contrast, other linear systems of quadrics do not lend them-selves to a similar exhaustive treatment. Here we discuss the simplest case, that of nets of conics. The result is intrinsically interesting, and involves some pleasant geometry. As well as deriving a list of types, and enumerating their properties, we study the elementary geometrical properties of the partition of the space Ω of nets into equivalence classes (or strata). We work over the field ℝ of real numbers, after performing preliminary calculations over ℂ.

This publication has 2 references indexed in Scilit: