Role of the D-alanyl carrier protein in the biosynthesis of D-alanyl-lipoteichoic acid
Open Access
- 1 February 1994
- journal article
- research article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 176 (3) , 681-690
- https://doi.org/10.1128/jb.176.3.681-690.1994
Abstract
D-Alanyl-lipoteichoic acid (D-alanyl-LTA) is a widespread macroamphiphile which plays a vital role in the growth and development of gram-positive organisms. The biosynthesis of this polymer requires the enzymic activation of D-alanine for its transfer to the membrane-associated LTA (mLTA). A small, heat-stable, and acidic protein that is required for this transfer was purified to greater than 98% homogeneity from Lactobacillus casei ATCC 7469. This protein, previously named the D-alanine-membrane acceptor ligase (V. M. Reusch, Jr., and F. C. Neuhaus, J. Biol. Chem. 246:6136-6143, 1971), functions as the D-alanyl carrier protein (Dcp). The amino acid composition, beta-alanine content, and N-terminal sequence of this protein are similar to those of the acyl carrier proteins (ACPs) of fatty acid biosynthesis. The isolation of Dcp and its derivative, D-alanyl approximately Dcp, has allowed the characterization of two novel reactions in the pathway for D-alanyl-mLTA biosynthesis: (i) the ligation of Dcp with D-alanine and (ii) the transfer of D-alanine from D-alanyl approximately Dcp to a membrane acceptor. It has not been established whether the membrane acceptor is mLTA or another intermediate in the pathway for D-alanyl-mLTA biosynthesis. Since the D-alanine-activating enzyme (EC 6.1.1.13) catalyzes the ligation reaction, this enzyme functions as the D-alanine-Dcp ligase (Dcl). Dcl also ligated the ACPs from Escherichia coli, Vibrio harveyi, and Saccharopolyspora erythraea with D-alanine. In contrast to the relaxed specificity of Dcl in the ligation reaction, the transfer of D-alanine to the membrane acceptor was highly specific for Dcp and did not occur with other ACPs. This transfer was observed by using only D-[14C]alanyl approximately Dcp and purified L. casei membranes. Thus, D-alanyl approximately Dcp is an essential intermediate in the transfer of D-alanine from Dcl to the membrane acceptor. The formation of D-alanine esters of mLTA provides a mechanism for modulating the net anionic charge in the cell wall.Keywords
This publication has 41 references indexed in Scilit:
- Molecular rearrangement of lactose plasmid DNA associated with high‐frequency transfer and cell aggregation in Lactococcus Iactis 712Molecular Microbiology, 1992
- D-Alanyl-lipoteichoic acid in Lactobacillus casei: secretion of vesicles in response to benzylpenicillinJournal of General Microbiology, 1992
- High frequency of conjugation in Lactobacillus mediated by an aggregation-promoting factorJournal of General Microbiology, 1992
- Location of divalent ion sites in acyl carrier protein using relaxation perturbed 2D NMRFEBS Letters, 1988
- A small, discrete acyl carrier protein is involved in de novo fatty acid biosynthesis in Streptomyces erythraeusFEBS Letters, 1987
- The amphiphilicity of ACP helices: A means of macromolecular interaction?FEBS Letters, 1987
- Purification and characterization of Rhodobacter sphaeroides acyl carrier proteinBiochemistry, 1987
- BIOSYNTHESIS OF MEMBRANE TEICHOIC ACID: ROLE OF THE d‐ALANINE‐ACTIVATING ENZYME AND d‐ALANINE: MEMBRANE ACCEPTOR LIGASE*Annals of the New York Academy of Sciences, 1974
- The Occurrence of Lipoteichoic Acids in the Membranes of Gram-positive BacteriaJournal of General Microbiology, 1972
- The Occurrence and Location of Teichoic Acids in LactobacilliJournal of General Microbiology, 1961