Regional Changes in Extreme Climatic Events: A Future Climate Scenario

Abstract
In this study a regional climate model is employed to expand on modeling experiments of future climate change to address issues of 1) the timing and length of the growing season and 2) the frequency and intensity of extreme temperatures and precipitation. The study focuses on California as a climatically complex region that is vulnerable to changes in water supply and delivery. Statistically significant increases in daily minimum and maximum temperatures occur with a doubling of atmospheric carbon dioxide concentration. Increases in daily temperatures lead to increases in prolonged heat waves and length of the growing season. Changes in total and extreme precipitation vary depending upon geographic location. Abstract In this study a regional climate model is employed to expand on modeling experiments of future climate change to address issues of 1) the timing and length of the growing season and 2) the frequency and intensity of extreme temperatures and precipitation. The study focuses on California as a climatically complex region that is vulnerable to changes in water supply and delivery. Statistically significant increases in daily minimum and maximum temperatures occur with a doubling of atmospheric carbon dioxide concentration. Increases in daily temperatures lead to increases in prolonged heat waves and length of the growing season. Changes in total and extreme precipitation vary depending upon geographic location.