Sixth-order term of the gradient expansion of the kinetic-energy density functional
- 1 October 1981
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review A
- Vol. 24 (4) , 1682-1688
- https://doi.org/10.1103/physreva.24.1682
Abstract
A generalization of Hodges's method of obtaining the gradient expansion is derived and then employed to determine the sixth-order term. The formula for it is as follows: . For atomic densities, is divergent near the nucleus and at large distances.
Keywords
This publication has 22 references indexed in Scilit:
- Thomas-Fermi Theory RevisitedPhysical Review Letters, 1973
- Quantum Corrections to the Thomas–Fermi Approximation—The Kirzhnits MethodCanadian Journal of Physics, 1973
- Density functional theory and the von Weizsacker methodJournal of Physics C: Solid State Physics, 1971
- Modified Weizsäcker Corrections in Thomas-Fermi TheoriesPhysical Review A, 1970
- Self-Consistent Equations Including Exchange and Correlation EffectsPhysical Review B, 1965
- Inhomogeneous Electron GasPhysical Review B, 1964
- Statistical Theory of Many-Electron Systems. General Considerations Pertaining to the Thomas-Fermi TheoryPhysical Review B, 1957
- Die Statistische Theorie des Atoms und ihre AnwendungenPublished by Springer Nature ,1949
- Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der ElementeThe European Physical Journal A, 1928
- The calculation of atomic fieldsMathematical Proceedings of the Cambridge Philosophical Society, 1927