Long-range diatomics+ppotentials of heavy rare gases

Abstract
We examine the long-range part of the rare-gas diatomic potentials that connect to the R{(n1)p5ns}+R{(n1)p5np} atomic states in the separated atom limit (n=3, 4, 5, and 6 for Ne, Ar, Kr, and Xe, respectively). We obtain our potentials by diagonalization of a Hamiltonian matrix containing the atomic energies and the electric dipole-dipole interaction, with experimentally determined parameters (atomic energies, lifetimes, transition wavelengths, and branching ratios) as input. Our numerical studies focus on Ne and Kr in this paper, but apply in principle to all other rare gases lacking hyperfine structure. These diatomic potentials are essential for applications in which homonuclear rare-gas pairs interact at large internuclear separations, greater than about 20 Bohr radii. Among such applications are the study of cold atomic collisions and photoassociative spectroscopy.