Abstract
The sensitivity of the hydrological cycle to soil water-holding capacity (WHC) is investigated using the Laboratoire de Meteorologie Dynamique General Circulation Model (LMD GCM) coupled to a land surface model (LSM). A reference simulation (REF), with WHCs equal to 150 mm globally (except in deserts where it is set to 30 mm), is compared to two perturbation simulations using datasets with realistic WHC distributions:the “available WHC” (AWC) dataset is physically consistent with the definition of WHC in the LSM and has a global average close to 150 mm; the “total WHC” (TWC) dataset is used as a secondary reference for a large WHC increase (more than a doubling from 150 mm). The average impact over land of the increase in WHC (from REF to both AWC and TWC) is an increase in annual mean evaporation, split between increased annual precipitation and decreased annual mean moisture convergence. The regional responses, however, are more complex: precipitation increases in summer over the midlatitude la... Abstract The sensitivity of the hydrological cycle to soil water-holding capacity (WHC) is investigated using the Laboratoire de Meteorologie Dynamique General Circulation Model (LMD GCM) coupled to a land surface model (LSM). A reference simulation (REF), with WHCs equal to 150 mm globally (except in deserts where it is set to 30 mm), is compared to two perturbation simulations using datasets with realistic WHC distributions:the “available WHC” (AWC) dataset is physically consistent with the definition of WHC in the LSM and has a global average close to 150 mm; the “total WHC” (TWC) dataset is used as a secondary reference for a large WHC increase (more than a doubling from 150 mm). The average impact over land of the increase in WHC (from REF to both AWC and TWC) is an increase in annual mean evaporation, split between increased annual precipitation and decreased annual mean moisture convergence. The regional responses, however, are more complex: precipitation increases in summer over the midlatitude la...