II. On the solution of linear differential equations
Open Access
- 31 December 1848
- journal article
- Published by The Royal Society in Philosophical Transactions of the Royal Society of London
- Vol. 138, 31-54
- https://doi.org/10.1098/rstl.1848.0002
Abstract
If the operation of differentiation with regard to the independent variable x be denoted by the symbol D, and if ϕ (D) represent any function of D composed of integral powers positive or negative, or both positive and negative, it may easily be shown, that ϕ (D){ψ x. u } = ψ x. ϕ (D) u + ψ' x. ϕ' (D) u + ½ψ" x. ϕ" (D) u + 1/2.3 ψ"' x. ϕ"' (D) u + . . . (1.) and that ϕx .ψ(D) u = ψ(D){ ϕx. u } - ψ'(D){ ϕ'x. u } + ½ψ"(D){ ϕ"x. u } - 1/2.3ψ"'(D){ ϕ"'x. u } + . . (2.) and these general theorems are expressions of the laws under which the operations of differentiation, direct and inverse, combine with those operations which are denoted by factors, functions of the independent variable. It will be perceived that the right-hand side of each of these equations is a linear differential expression; and whenever an expression assumes or can be made to assume either of these forms, its solution is determined; for the equations ϕ (D){ψ x. u } = P and ϕx . ψ(D) u = P are respectively equivalent to u = (ψ x ) -1 { ϕ (D)} -1 P and u = {ψ(D)} -1 (( ϕx ) -1 P).Keywords
This publication has 0 references indexed in Scilit: