Noise-Sustained currents in quasigeostrophic turbulence over topography

Abstract
We study the development of mean structures in a nonlinear model of large scale ocean dynamics with bottom topography and dissipation, and forced with a noise term. We show that the presence of noise in this nonlinear model leads to persistent average currents directed along isobaths. At variance with previous works we use a scale unselective dissipation, so that the phenomenon can not be explained in terms of minimum enstrophy states. The effect requires the presence of both the nonlinear and the random terms, and can be though of as an ordering of the stochastic energy input by the combined effect of nonlinearity and topography. The statistically steady state is well described by a generalized canonical equilibrium with mean energy and enstrophy determined by a balance between random forcing and dissipation. This result allows predicting the strengh of the noise-sustained currents. Finally we discuss the relevance that these noise-induced currents could have on real ocean circulation.

This publication has 0 references indexed in Scilit: