Hammersley's interacting particle process and longest increasing subsequences
- 1 June 1995
- journal article
- research article
- Published by Springer Nature in Probability Theory and Related Fields
- Vol. 103 (2) , 199-213
- https://doi.org/10.1007/bf01204214
Abstract
No abstract availableKeywords
This publication has 10 references indexed in Scilit:
- On the Length of the Longest Increasing Subsequence in a Random PermutationPublished by Cambridge University Press (CUP) ,1997
- A new look at independenceThe Annals of Probability, 1996
- The Height of a Random Partial Order: Concentration of MeasureThe Annals of Applied Probability, 1992
- On the Length of the Longest Monotone Subsequence in a Random PermutationThe Annals of Applied Probability, 1991
- Group representations in probability and statisticsPublished by Institute of Mathematical Statistics ,1988
- Interacting Particle SystemsPublished by Springer Nature ,1985
- First-passage percolation and a higher-dimensional generalizationContemporary Mathematics, 1985
- Non-equilibrium behaviour of a many particle process: Density profile and local equilibriaProbability Theory and Related Fields, 1981
- A variational problem for random Young tableauxAdvances in Mathematics, 1977
- A FEW SEEDLINGS OF RESEARCHPublished by University of California Press ,1972