Design and testing of a new high-accuracy ultraviolet–visible–near-infrared spectrophotometer
- 1 April 1992
- journal article
- Published by Optica Publishing Group in Applied Optics
- Vol. 31 (10) , 1557-1567
- https://doi.org/10.1364/ao.31.001557
Abstract
A new high-accuracy spectrophotometer has been developed at the National Research Council of Canada to measure regular transmittance factors over the spectral range from 200 to 2500 nm. The most significant feature of this automated single-beam instrument is a highly collimated normal-incidence beam geometry, which eliminates the need for polarization corrections or for an averaging sphere for the calibration of regular-transmittance reference materials. The instrument also possesses a large uniform measurement beam that minimizes errors caused by sample nonuniformity. We describe the instrument’s design and the testing, optimization, and verification procedures that have been carried out for measurements in the visible and near-infrared regions. Systematic errors that have been determined and corrected for include wavelength shifts, stray light, system drift, and nonlinearity. In the visible and near-infrared regions, the overall photometric accuracy is estimated to be 2.5 and 4.0 parts in 104, respectively. The wavelength scale is accurate to within ±0.1 nm with a reproducibility of ±0.03 nm over its entire design range from 200 to 2500 nm.Keywords
This publication has 3 references indexed in Scilit:
- Automated high precision variable aperture for spectrophotometer linearity testingApplied Optics, 1991
- New Reference SpectrophotometerApplied Optics, 1973
- Polarization in Cary Model 14 Spectrophotometers and Its Effect on Transmittance Measurements of Anisotropic MaterialsApplied Optics, 1968