Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties
Top Cited Papers
- 1 February 2004
- journal article
- review article
- Published by Springer Nature in Pflügers Archiv - European Journal of Physiology
- Vol. 447 (5) , 653-665
- https://doi.org/10.1007/s00424-003-1168-y
Abstract
The organic anion transporting polypeptides (rodents: Oatps, human: OATPs) form a superfamily of sodium-independent transport systems that mediate the transmembrane transport of a wide range of amphipathic endogenous and exogenous organic compounds. Since the traditional SLC21 gene classification does not permit an unequivocal and species-independent identification of genes and gene products, all Oatps/OATPs are newly classified within the OATP/SLCO superfamily and subdivided into families (≥40% amino acid sequence identity), subfamilies (≥60% amino acid sequence identity) and individual genes and gene products according to their phylogenetic relationships and chronology of identification. Implementation of this new classification and nomenclature system occurs in agreement with the HUGO Gene Nomenclature Committee (HGNC). Among 52 members of the OATP/SLCO superfamily, 36 members have been identified so far in humans, rat and mouse. The latter are clustered within 6 (out of 12) families (OATP1–OATP6) and 13 subfamilies. Oatps/OATPs represent 12 transmembrane domain proteins and contain the superfamily signature D-X-RW-(I,V)-GAWW-X-G-(F,L)-L. Although species divergence, multispecificity and wide tissue distribution are common characteristics of many Oatps/OATPs, some members of the OATP/SLCO superfamily are highly conserved during evolution, have a high substrate specificity and exhibit unique cellular expression in distinct organs. Hence, while Oatps/OATPs with broad substrate specificity appear to play an important role in the bioavailability, distribution and excretion of numerous exogenous amphipathic organic anionic compounds, Oatps/OATPs with a narrow spectrum of transport substrates may exhibit more specific physiological functions in distinct organs.Keywords
This publication has 52 references indexed in Scilit:
- A Naturally Occurring Mutation in the SLC21A6Gene Causing Impaired Membrane Localization of the Hepatocyte Uptake TransporterJournal of Biological Chemistry, 2002
- Cloning, Expression, and Ontogeny of Mouse Organic Anion-Transporting Polypeptide-5, a Kidney-Specific Organic Anion TransporterBiochemical and Biophysical Research Communications, 2001
- Molecular Alterations in Hepatocyte Transport Mechanisms in Acquired Cholestatic Liver DisordersSeminars in Liver Disease, 2000
- Molecular Identification of a Rat Novel Organic Anion Transporter moat1, Which Transports Prostaglandin D2, Leukotriene C4, and TaurocholateBiochemical and Biophysical Research Communications, 2000
- Full-Length cDNA Cloning and Genomic Organization of the Mouse Liver-Specific Organic Anion Transporter-1 (lst-1)Biochemical and Biophysical Research Communications, 2000
- Molecular Identification and Characterization of Novel Members of the Human Organic Anion Transporter (OATP) FamilyBiochemical and Biophysical Research Communications, 2000
- Tree View: An application to display phylogenetic trees on personal computersBioinformatics, 1996
- P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclaturePharmacogenetics, 1996
- Stable Inducible Expression of a Functional Rat Liver Organic Anion Transport Protein in HeLa CellsPublished by Elsevier ,1995
- Identification and Characterization of a Prostaglandin TransporterScience, 1995