Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3
- 1 November 2008
- journal article
- Published by Cold Spring Harbor Laboratory in Genes & Development
- Vol. 22 (21) , 2994-3006
- https://doi.org/10.1101/gad.1724408
Abstract
The TATA-binding protein (TBP) is critical for transcription by all three nuclear RNA polymerases. In order to identify factors that interact with TBP, the nonnatural photoreactive amino acid ρ-benzoyl-phenylalanine (BPA) was substituted onto the surface of Saccharomyces cerevisiae TBP in vivo. Cross-linking of these TBP derivatives in isolated transcription preinitiation complexes or in living cells reveals physical interactions of TBP with transcriptional coregulator subunits and with the general transcription factor TFIIA. Importantly, the results show a direct interaction between TBP and the SAGA coactivator subunits Spt3 and Spt8. Mutations on the Spt3-interacting surface of TBP significantly reduce the interaction of TBP with SAGA, show a corresponding decrease in transcription activation, and fail to recruit TBP to a SAGA-dependent promoter, demonstrating that the direct interaction of these factors is important for activated transcription. These results prove a key prediction of the model for stimulation of transcription at SAGA-dependent genes via Spt3. Our cross-linking data also significantly extend the known surfaces of TBP that directly interact with the transcriptional regulator Mot1 and the general transcription factor TFIIA.Keywords
This publication has 64 references indexed in Scilit:
- The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complexNature Structural & Molecular Biology, 2007
- SAGA binds TBP via its Spt8 subunit in competition with DNA: implications for TBP recruitmentThe EMBO Journal, 2006
- The General Transcription Machinery and General CofactorsCritical Reviews in Biochemistry and Molecular Biology, 2006
- Multifunctional yeast high-copy-number shuttle vectorsPublished by Elsevier ,2003
- Selective Recruitment of TAFs by Yeast Upstream Activating SequencesCurrent Biology, 2002
- TAF-Containing and TAF-Independent Forms of Transcriptionally Active TBP in VivoScience, 2000
- Distinct Classes of Yeast Promoters Revealed by Differential TAF RecruitmentScience, 2000
- Crystal structure of a TFIIB–TBP–TATA-element ternary complexNature, 1995
- Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activatorsCell, 1994
- Crystal structure of a yeast TBP/TATA-box complexNature, 1993