Percept-choice sequences driven by interrupted ambiguous stimuli: A low-level neural model

Top Cited Papers
Open Access
Abstract
Existing neural explanations of spontaneous percept switching under steady viewing of an ambiguous stimulus do not fit the fact that stimulus interruptions cause the same percept to reappear across many ON/OFF cycles. We present a simple neural model that explains the observed behavior and predicts several more complicated percept sequences, without invoking any “high-level” decision making or memory. Percept choice at stimulus onset, which differs fundamentally from standard percept switching, depends crucially on a hitherto neglected interaction between local “shunting” adaptation and a near-threshold neural baseline. Stimulus ON/OFF timing then controls the generation of repeating, alternating, or more complex choice sequences. Our model also explains “priming” versus “habituation” effects on percept choice, reinterprets recent neurophysiological data, and predicts the emergence of hysteresis at the level of percept sequences, with occasional noise-induced sequence “hopping.”

This publication has 0 references indexed in Scilit: