Synaptic Basis of Persistent Activity in Prefrontal Cortex In Vivo and in Organotypic Cultures

Abstract
Persistent activity is observed in many cortical and subcortical brain regions, and may subserve a variety of functions. Within the prefrontal cortex (PFC), neurons transiently maintain information in working memory via persistent activity patterns; however, the mechanisms involved are largely unknown. The present study used intracellular recordings from deep layer PFC neurons in vivo and patch-clamp recordings from PFC neurons in organotypic brain slice cultures to examine the ionic mechanisms underlying persistent activity states evoked by various inputs. Persistent activity had consistent features regardless of the initiating stimulus; it was driven by non-NMDA glutamate receptors yet consisted of an initial GABA mediated component, followed by a prolonged synaptically mediated inward current that maintained the sustained depolarization on which rode many asynchronous GABA-mediated events. The stereotyped nature of the multiple-component persistent activity pattern reported here might be a common feature of interconnected cortical networks but within PFC could be related to the persistent activity required for working memory.