Bats go head-under-heels: the biomechanics of landing on a ceiling
- 1 April 2009
- journal article
- Published by The Company of Biologists in Journal of Experimental Biology
- Vol. 212 (7) , 945-953
- https://doi.org/10.1242/jeb.026161
Abstract
SUMMARY Bats typically roost head-under-heels but they cannot hover in this position, thus, landing on a ceiling presents a biomechanical challenge. To land, a bat must perform an acrobatic flip that brings the claws of the toes in contact with the ceiling and do so gently enough as to avoid injury to its slender hindlimbs. In the present study, we sought to determine how bats land,to seek a link between landing kinematics and ceiling impact forces, and to determine whether landing strategies vary among bat species. To do this, we measured the kinematics and kinetics of landing behaviour in three species of bats as they landed on a force-measuring platform (Cynopterus brachyotis, N=3; Carollia perspicillata, N=5; Glossophaga soricina, N=5). Kinematics were similar for all bats within a species but differed among species. C. brachyotisperformed four-point landings, during which body pitch increased until the ventral surface of the body faced the ceiling and the thumbs and hindlimbs simultaneously grasped the surface. Bats of the other two species performed two-point landings, whereby only the hindlimbs made contact with the ceiling. During these two-point landings, the hindlimbs were drawn up the side of the body to come in contact with the ceiling, causing simultaneous changes in body pitch, roll and yaw over the course of the landing sequence. Right-handed and left-handed forms of the two-point landing were observed, with individuals often switching back and forth between them among landing events. The four-point landing of C. brachyotis resulted in larger peak forces(3.7±2.4 body weights; median ± interquartile range) than the two-point landings of C. perspicillata (0.8±0.6 body weights)or G. soricina (0.8±0.2 body weights). Our results demonstrate that the kinematics and kinetics of landing vary among bat species and that there is a correlation between the way a bat moves its body when it lands and the magnitude of peak impact force it experiences during that landing. We postulate that these interspecific differences in impact force could result because of stronger selective pressure for gentle landing in cave-roosting(C. perspicillata, G. soricina) versus foliage-roosting(C. brachyotis) species.Keywords
This publication has 25 references indexed in Scilit:
- Kinematics and power requirements of ascending and descending flight in the pigeon (Columba livia)Journal of Experimental Biology, 2008
- Comparative Roosting Ecology of Cynopterus (Chiroptera: Pteropodidae) Fruit Bats in Peninsular Malaysia1Biotropica, 2006
- Echolocating Bats Use a Nearly Time-Optimal Strategy to Intercept PreyPLoS Biology, 2006
- Steering by Hearing: A Bat’s Acoustic Gaze Is Linked to Its Flight Motor Output by a Delayed, Adaptive Linear LawJournal of Neuroscience, 2006
- Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus)flying across a range of speedsJournal of Experimental Biology, 2004
- The bat fauna of Lamanai, Belize: roosts and trophic rolesJournal of Tropical Ecology, 2001
- Roosts Used by Sturnira lilium (Chiroptera: Phyllostomidae) in Belize1Biotropica, 2000
- Glossophaga soricinaMammalian Species, 1991
- Bats Killed at a North Florida Television Tower: A 25-Year RecordJournal of Mammalogy, 1981
- Early Eocene Bat from WyomingScience, 1966