Abstract
A proof is given that the improper Riemann integral of ζ(s, a) with respect to the real parameter a, taken over the interval (0, 1], vanishes for all complex s with ℜ(s) < 1. The integral does not exist (as a finite real number) when ℜ(s) ≥ 1.

This publication has 5 references indexed in Scilit: