Solid-Phase ATRP Synthesis of Peptide−Polymer Hybrids

Abstract
A versatile methodology to prepare hybrid biomaterials by atom transfer radical polymerization from resin-supported peptides has been established. As an example, we have synthesized a GRGDS-functionalized poly(2-hydroxyethyl methacrylate). The peptide-polymer was characterized by solid-state (13)C NMR and GPC and found to have a number average molecular weight of 4420 and a polydispersity of 1.47. These values are comparable to those obtained from solution-phase syntheses, suggesting the ATRP reaction is successful from a peptide-conjugated solid support. Solid-state (13)C NMR was used to characterize multiple steps in the reaction, and the synthesis was found to be near quantitative. We have performed cell adhesion experiments and observed the GRGDS sequence-promoted cell adhesion, whereas unfunctionalized poly(2-hydroxyethyl methacrylate) did not. By incorporating cell-signaling moieties in materials with defined molecular architecture, it will be possible to control the interactions between polymeric materials and biological systems.