Abstract
Recently, electromigration has been identified as a potential wear-out failure mode for semiconductor devices employing metal film conductors of inadequate cross-sectional area. A brief survey of electromigration indicates that although the effect has been known for several decades, a great deal of the processes involved is still unknown, especially for complex metals and solute ions. Earlier design equations are improved to account for conductor film cross-sectional area as well as film structure, film temperature, and current density. Design curves are presented which permit the construction of high reliability "infinite life" aluminum conductors for specific conditions of maximum current and temperature stress expected in use. It is also shown that positive gradients, in terms of electron flow, of temperature, current density, or ion diffusion coefficient foreshorten conductor life because they present regions where vacancies condense to form voids.

This publication has 14 references indexed in Scilit: