Some efficient random imputation methods

Abstract
Imputation methods that assign a selection of respondents’ values for missing i tern nonresponses give rise to an addd,tional source of sampling variation, which we term imputation varLance , We examine the effect of imputation variance on the precision of the mean, and propose four procedures for sampling the rEespondents that reduce this additional variance. Two of the procedures employ improved sample designs through selection of respc,ndents by sampling without replacement and by stratified sampl;lng. The other two increase the sample base by the use of multiple imputations.

This publication has 2 references indexed in Scilit: