Reduction of myosin‐light‐chain phosphorylation and of parvalbumin content in myotonic mouse muscle and its reversal by tocainide

Abstract
In muscle of the myotonic mouse mutant, ‘arrested development of righting response’, ADR, a reduced level of fast-myosin-light-chain-2 (LC2f) phosphorylation was observed in addition to a lowered parvalbumin content. In fast muscles, average phosphorylation levels of LC2f (LC2-P/LC2 total) were 0.76 mol/mol for wild type and 0.59 mol/mol for the myotonic mutant. The difference was not due to short-term activity prior to freezing because it was also found in curare-paralyzed muscles. Long-term treatment of genetically myotonic animals with the membrane-stabilizing drug, tocainide, led to an increase of parvalbumin content and LC2-P level. In wild-type mice, tocainide had a similar effect, leading to supranormal parvalbumin concentrations. It is concluded that both the basal level of LC2-P and parvalbumin concentration are regulated by a common factor, related to long-term muscle activity.