Forty-one near full-length HIV-1 sequences from Kenya reveal an epidemic of subtype A and A-containing recombinants

Abstract
To further define the genetic diversity of HIV-1 in Kenya using approaches that clearly distinguish subtypes from inter-subtype recombinants. Near full genome sequencing and analysis were used, including sensitive new tools for detection and mapping of recombinants. Purified peripheral blood mononuclear cell DNA from 41 HIV-1 positive blood donations collected from six hospitals across southern Kenya was used to amplify near full-length genomes by nested PCR. These were sequenced on an ABI 3100 automated sequencer and analyzed phylogenetically. Among 41 near full-length genomes, 25 were non-recombinant (61%) and 16 were recombinant (39%). Of the 25 pure subtypes, 23 were subtype A, one was subtype C and one was subtype D. Most recombinants consisted of subtype A and either subtype C or subtype D; a few contained A2, a recently identified sub-subtype. Two A2/D recombinants had identical breakpoints and may represent a circulating recombinant form. A third A2/D recombinant had the same structure as a previously described Korean isolate, and these may constitute a second A2-containing circulating recombinant form. In Kenya, 93% of HIV-1 genomes were subtype A or A-containing recombinant strains. Almost 40% of all strains were recombinant. Vaccine candidates tested in Kenya should be based on subtype A strains, but the methods used for evaluation of breakthrough infections during future vaccine trials should be capable of identifying non-A subtypes, the A2 sub-subtype, and recombinants.

This publication has 44 references indexed in Scilit: