Abstract
This study explores several possibilities for a correspondence in the behavior of ice at failure during uniaxial creep (constant stress) and strength (constant strain rate) experiments. The usual notion of failure in ice is employed (i.e., the occurrence of a minimum strain rate during a creep test and a peak or maximum stress during a strength test), and the behavior at failure is discussed in terms of a recently proposed nonlinear viscoelastic constitutive model for ice. It is demonstrated that no correspondence between creep and strength data can be expected in general; however, several approximate interrelationships do occur for the experimentally motivated special case of a constant (independent of stress and strain rate) failure strain.

This publication has 0 references indexed in Scilit: