Pigment Content and Gas Exchange of Red Raspberry In Vitro and Ex Vitro
Open Access
- 1 March 1984
- journal article
- Published by American Society for Horticultural Science in Journal of the American Society for Horticultural Science
- Vol. 109 (2) , 177-181
- https://doi.org/10.21273/jashs.109.2.177
Abstract
CO2 uptake and various leaf parameters were examined including photosynthetic pigment content (chlorophyll a, b, and total carotenoids), fresh/dry weight, percentage of water content, gram dry weight/area, and total plantlet leaf areas of an aseptically cultured clone of red raspberry (Rubus idaeus L.) incubated at 5 light intensities, from 2 to 6 klx. Cultured plantlets demonstrated relatively low levels of CO2 uptake, averaging 2.5 mg CO2 dm–2hr–1 and rarely exceeding 4 mg CO2 dm–2 hr–1 at saturating light intensities. Pigment content was higher in plantlets incubated at lower light intensities (2 to 4 klx). Cultures incubated at 3 klx were evaluated both at the time of transfer to soil and 1 month later. Plantlet leaves retained from culture could be distinguished from new leaves by tagging all plantlet leaves prior to soil transfer; both were assessed separately 1 month after transplantation. Leaves retained from culture, 30% of the total leaf area of transplants, contributed less than 10% of the CO2 uptake at 3 klx. These leaves accounted for 10% to 30% of the total leaf area at higher light intensities but were net respirers. There was an increase in dry matter accumulation at 6 and 9 klx in these tagged leaves, but not at 3 klx. Continued accumulation of dry matter by the tagged leaves can be only at the expense of photosynthetic activity of the newly formed leaves. New leaves of transplants had a greater dry matter accumulation at 9 klx and a pigment content greater than the tagged leaves. Their pigment content was similar to that of young, control plant leaves. Transplants were capable of uptake rates of 5–7 mg CO2 dm–2 hr–1 or 50% of field control rates. The photosynthetic contribution of the leaves from culture was small or negative. The first new leaves formed in soil were transitional with intermediate capability. Acclimatization to the soil environment was time dependent and required the production of new leaves initiated in the new environment.Keywords
This publication has 0 references indexed in Scilit: