Abstract
Using β-glucuronidsase the cell walls of tomato and potato primary microsporocytes can be digested. When the resulting protoplasts are exposed to distilled water, they burst, and complete sets of synaptonemal complexes are released to settle on plastic coated slides. After drying and formalin fixation, the synaptonemal complexes can be stained with silver or phosphotungstic acid and observed in the light and/or electron microscope. Silver staining gives better contrast for both light and electron microscopy but stains only lateral elements and kinetochores. Phosphotungstic acid staining gives little or no contrast for light microscopy, but stains both the lateral and central elements of the synaptonemal complex, kinetochores, and structures that are probably recombination nodules for electron microscopy. This technique offers a powerful tool for genome analysis by allowing (1) the determination of relative and absolute lengths of synaptonemal complexes and chromosome arm ratios at pachytene, (2) the analysis of complex patterns of synapsis, and (3) the location of what are probably recombination nodules along the length of synaptonemal complexes.