Fermentation of xylose and hemicellulose hydrolysates by an ethanol-adapted culture ofBacteroides polypragmatus

Abstract
Bacteroides polypragmatus type strain GP4 was adapted to grow in the presence of 3.5% (w/v) ethanol by successive transfers into 1% (w/v)d-xylose media supplemented with increasing concentrations of ethanol. The maximum specific growth rate of the ethanol-adapted culture (μ=0.30 h-1) was not affected by up to 2% (w/v) ethanol but that of the non-adapted strain declined by about 50%. The growth rate of both cultures was limited by nutrient(s) contained in yeast extract. The ethanol yield of the adapted culture (1.01 mol/mol xylose) was higher than that (0.80 mol/mol xylose) of the non-adapted strain. The adapted culture retained the ability to simultaneously ferment pentose and hexose sugars, and moreover it was not inhibited by xylose concentrations of 7–9% (w/v). This culture also readily fermented hemicellulose hydrolysates obtained by mild acid hydrolysis of either hydrogen fluoride treated or steam exploded Aspen wood. The ethanol yield from the fermentation of the hydrolysates was comparable to that obtained from xylose.