Abstract
Examples of edge operators include Laplacians on asymptotically flat and asymptotically hyperbolic manifolds. Edge operators also arise in boundary problems around higher condimension boundaries. This paper is concerned with the analysis of general elliptic edge operators with constant indicide roots. We determine when such an operator has a distributional asymptotic expansion. Conditions are given to guarantee that the coefficients of this expansion are smooth. In Part I of this paper we only study the case when the operator is semi-Fredholm. Part II will examine edge operators with infinite dimensional kernel and cokernel, as well as develop the theory of Poisson edge operators.

This publication has 14 references indexed in Scilit: