Association of degradation and secretion of three chimeric polypeptides in Escherichia coli
Open Access
- 1 May 1988
- journal article
- research article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 170 (5) , 2212-2220
- https://doi.org/10.1128/jb.170.5.2212-2220.1988
Abstract
We investigated the stability of fusion proteins composed of the signal peptide of the heat-labile enterotoxin of Escherichia coli and three polypeptides: the bacterial cytoplasmic chloramphenicol acetyltransferase, the mouse dihydrofolate reductase, and human immune interferon. We demonstrate that these proteins are rapidly degraded as a result of being targeted to the secretion apparatus of E. coli, with the extent of degradation varying among the three fusion proteins. Four lines of experimental evidence are presented in support of this suggestion. First, the chimeric polypeptides containing a functional signal peptide were detected in low amounts in vivo. When a mutation was introduced in the signal peptide, resulting in lack of recognition by the secretion apparatus, the chimeric proteins accumulated at high levels in the cytoplasm of the cell. Second, both the wild-type and mutant polypeptides accumulated in a purified and reconstituted in vitro translation system from E. coli and were equally susceptible to digestion by an exogenous protease. Third, the chimeric polypeptides lacking the signal peptide accumulated in a stable form in vivo. Fourth, the precursors of the proteins containing a functional signal peptide accumulated in a secA ts mutant at the restrictive temperature when secretion was blocked, suggesting that degradation is tightly linked to the secretion apparatus.This publication has 71 references indexed in Scilit:
- Correlation of competence for export with lack of tertiary structure of the mature species: A study in vivo of maltose-binding protein in E. coliCell, 1986
- The product of gene secC is involved in the synthesis of exported proteins in E. coliCell, 1984
- Signal sequence mutations disrupt feedback between secretion of an exported protein and its synthesis in E. coliNature, 1984
- Mechanisms of Intracellular Protein BreakdownAnnual Review of Biochemistry, 1982
- Resin development for electron microscopy and an analysis of embedding at low temperature*Journal of Microscopy, 1982
- Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein.The Journal of cell biology, 1981
- Ultrastructural localization of intracellular antigens by the use of protein A-gold complex.Journal of Histochemistry & Cytochemistry, 1978
- Intracellular Protein Degradation in Mammalian and Bacterial Cells: Part 2Annual Review of Biochemistry, 1976
- Intracellular Protein Degradation in Mammalian and Bacterial CellsAnnual Review of Biochemistry, 1974
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970