Hydrogen chemical ionization mass spectrometry of metalloporphyrins

Abstract
The hydrogen chemical ionization (H2 CI) mass spectra of a range of metal(II) (Ni, Cu, Co, Pt), metal (III) (Al, Mn, Ga, Fe (bearing a single axial ligand)) and metal(IV) (Si, Ge, Sn (bearing two axial ligands) and V (as VO2+)) porphyrins have been determined, The spectra are highly dependent on the coordinated metal, rather than the axial ligand(s) (where present). Ni(II), Cu(II), Mn(II or III), Ga(III), Ge(IV), Fe(III) and Sn(IV) porphyrins fragment via hydrogenation and demetallation, followed by cleavage of the resulting porphyrinogens at the meso(bridge) positions to give mono‐ and di‐pyrrolic fragments. Tripyrrolic fragments are also observed in the case of Ni(II), Cu(II) and Sn(IV). Fragmentations of this type are similar to those observed for free‐base porphyrins. In the case of Pt(II), Co(II), Al(III), Si(IV) and V(IV) (as vanadyl), the dipyrrolic fragment ions are either very weak or completely absent; hence their H2CI spectra contain limited structural information. This variable CI behaviour may be related to the relative stabilities of the metalloporphyrins together with the multiple stable valency states exhibited by several metals.