Facets of confinement and dynamical chiral symmetry breaking

Abstract
The gap equation is a cornerstone in understanding dynamical chiral symmetry breaking and may also provide clues to confinement. A symmetry-preserving truncation of its kernel enables proofs of important results and the development of an efficacious phenomenology. We describe a model of the kernel that yields: a momentum-dependent dressed-quark propagator in fair agreement with quenched lattice-QCD results; and chiral limit values: f_pi= 68 MeV and = -(190 MeV)^3. It is compared with models inferred from studies of the gauge sector.

This publication has 0 references indexed in Scilit: