Abstract
This study focuses on feedbacks of the high-frequency eddy activity onto the quasi-stationary circulation, particularly with regard to the North Atlantic Oscillation (NAO). The methodology consists of analyzing NCEP–NCAR reanalysis data and sensitivity runs from a high-resolution nonhydrostatic regional model. Consistent with recent studies, results show that the jet displacement characteristic of the NAO phenomenon depends strongly on the dynamics of the synoptic-scale waves and the way they break. Positive and negative phases of the NAO are closely related to anticyclonic and cyclonic wave breaking, respectively. Indeed, the high-frequency momentum flux whose sign is directly related to the type of wave breaking is correlated with the NAO index over the Atlantic. The peak of the momentum flux signal precedes that of the NAO by a few days suggesting that wave breaking is triggering NAO events. Two examples illustrate the significant impact of single storms, in particular those occurring in the e... Abstract This study focuses on feedbacks of the high-frequency eddy activity onto the quasi-stationary circulation, particularly with regard to the North Atlantic Oscillation (NAO). The methodology consists of analyzing NCEP–NCAR reanalysis data and sensitivity runs from a high-resolution nonhydrostatic regional model. Consistent with recent studies, results show that the jet displacement characteristic of the NAO phenomenon depends strongly on the dynamics of the synoptic-scale waves and the way they break. Positive and negative phases of the NAO are closely related to anticyclonic and cyclonic wave breaking, respectively. Indeed, the high-frequency momentum flux whose sign is directly related to the type of wave breaking is correlated with the NAO index over the Atlantic. The peak of the momentum flux signal precedes that of the NAO by a few days suggesting that wave breaking is triggering NAO events. Two examples illustrate the significant impact of single storms, in particular those occurring in the e...