Prediction of contact maps with neural networks and correlated mutations
Open Access
- 1 November 2001
- journal article
- research article
- Published by Oxford University Press (OUP) in Protein Engineering, Design and Selection
- Vol. 14 (11) , 835-843
- https://doi.org/10.1093/protein/14.11.835
Abstract
Contact maps of proteins are predicted with neural network-based methods, using as input codings of increasing complexity including evolutionary information, sequence conservation, correlated mutations and predicted secondary structures. Neural networks are trained on a data set comprising the contact maps of 173 non-homologous proteins as computed from their well resolved three-dimensional structures. Proteins are selected from the Protein Data Bank database provided that they align with at least 15 similar sequences in the corresponding families. The predictors are trained to learn the association rules between the covalent structure of each protein and its contact map with a standard back propagation algorithm and tested on the same protein set with a cross-validation procedure. Our results indicate that the method can assign protein contacts with an average accuracy of 0.21 and with an improvement over a random predictor of a factor >6, which is higher than that previously obtained with methods only based either on neural networks or on correlated mutations. Furthermore, filtering the network outputs with a procedure based on the residue coordination numbers, the accuracy of predictions increases up to 0.25 for all the proteins, with an 8-fold deviation from a random predictor. These scores are the highest reported so far for predicting protein contact maps.Keywords
This publication has 35 references indexed in Scilit:
- A neural network based predictor of residue contacts in proteinsProtein Engineering, Design and Selection, 1999
- An entropy criterion to detect minimally frustrated intermediates in native proteinsProceedings of the National Academy of Sciences, 1998
- On the thermodynamic hypothesis of protein foldingProceedings of the National Academy of Sciences, 1998
- Protein Structure Prediction: Recognition of Primary, Secondary, and Tertiary Structural Features from Amino Acid SequenceCritical Reviews in Biochemistry and Molecular Biology, 1995
- Correlated mutations and residue contacts in proteinsProteins-Structure Function and Bioinformatics, 1994
- Protein Structures from Distance InequalitiesJournal of Molecular Biology, 1993
- Topology fingerprint approach to the inverse protein folding problemJournal of Molecular Biology, 1992
- A novel approach to prediction of the 3‐dimensional structures of protein backbones by neural networksFEBS Letters, 1990
- [9] Distance geometryPublished by Elsevier ,1989
- Principles that Govern the Folding of Protein ChainsScience, 1973