Abstract
An electromagnetic vector-field model for design of optical components based on the finite-difference time-domain method and radiation integrals is presented. Its ability to predict the optical electromagnetic dynamics in structures with complex material distributions is demonstrated. Theoretical and numerical investigations of finite-length surface-relief structures embedded in polymer dielectric waveguiding materials are presented. The importance of several geometric parameter dependencies is indicated as far-field power distributions are rearranged between diffraction orders. The influences of the variation in grating period, modulation depth, length, and profile are investigated.