The Euler scheme for Lévy driven stochastic differential equations

Abstract
In relation with Monte Carlo methods to solve some integro-differential equations, we study the approximation problem of $\mathbb{E}g(X_T)$ by $\mathbb{E}g(\overline{X}_T^n)$, where $(X_t, 0 \leq t \leq T)$ is the solution of a stochastic differential equation governed by a Lévy process $(Z_t), (\overline{X}_t^n)$ is defined by the Euler discretization scheme with step $T/n$. With appropriate assumptions on $g(\cdot)$, we show that the error of $\mathbb{E}g(X_T) - \mathbb{E}g(\overline{X}_T^n)$ can be expanded in powers of $1/n$ if the Lévy measure of $Z$ has finite moments of order high enough. Otherwise the rate of convergence is slower and its speed depends on the behavior of the tails of the Lévy measure.